The Modulus of a Cross Linked Melt

Sam Edwards

Cavendish Laboratory, University of Cambridge, UK

and

Hiroshi Takano

Keio University, Yokohama, Japan

August 23, 1999

History

The problem of permanent cross links (see figure 1), where $\mathbf{r}(s_b^a) = \mathbf{r}(s_a^b)$, and that of entanglements, where $I_{ab}([\mathbf{r}_a][\mathbf{r}_b]) = I_{ab}([\mathbf{r}_a^{-1}][\mathbf{r}_b^{-1}])$, is how to determine the modulus, G:

$$G = G' + iG''$$

$$G = G(\omega, c_x, c_e)$$
 (1)

where $c_x = \frac{N_x}{V}$ and $c_e = \frac{\sum I}{V}$.

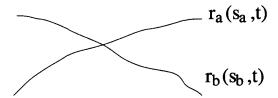


Figure 1:

The problem is that we need to obtain F_{expt} , where

$$F_{expt} = \langle F([s_b^a], I_{ab}) \rangle \tag{2}$$

$$= \left\langle kT \log \int \exp\left(-H/kT\right) \prod \left[\frac{\delta \left(r_{\rm a}^{\rm b} - r_{\rm b}^{\rm a}\right)}{\delta \left(I - J\right)} \right] \right\rangle \tag{3}$$

i.e.

$$F_{expt} = \langle \log Z \rangle \tag{4}$$

$$\neq \log \langle Z \rangle$$
 (5)

If $F(n) = \langle Z^n \rangle$, then

$$\left. \frac{\partial F}{\partial n} \right|_{n=0} = \langle F \rangle \tag{6}$$

This is the extension of the Gibbs method (equivalent to the replica method). It cannot give G. We therefore need a dynamical solution. The dynamical problem needs extensions of the Boltzmann (Smoluchowski, Langevin, Fokker-Planck) equation.

Method

The method is to use the Rayleighan (or Rayleighs friction function).

$$\mathcal{R}_0 = L + M + \sum \lambda C \tag{7}$$

where L is the Lagrangian, M is the friction function, λ are the Lagrange multipliers, and C are the associated constraints. Rayleigh showed that:

$$\frac{\delta L}{\delta r} + \frac{\delta M}{\delta u} + \sum \lambda \frac{\delta C}{\delta r} = 0 \tag{8}$$

where $u = \dot{r}$, but is only identified at the end.

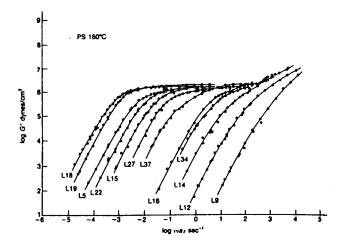


Figure 2: Experimental data from Onogi, Masuda and Kitagawa, *Macromolecules*, 3, 109 (1970)

Problem

The problem is to predict the experimental curve

$$G'(c_e) > G'(c_e = 0) \tag{9}$$

A simple qualitative explanation can be seen in figure 4.

Model

 $n=n\left(s\right)$. The axis of the tube, the primitive path, is described by $\mathbf{R}(\mathbf{n}\left(\mathbf{s}\right),\mathbf{t})$. The Rayleighan involves $\mathbf{r},\dot{\mathbf{r}},\mathbf{R},\dot{\mathbf{R}}$.

The potential function is given by:

$$U = \frac{3kT}{2L} \int_0^L \left[\left(\frac{\partial \mathbf{r}}{\partial s} \right)^2 + q_1^2 \left(\mathbf{r} - \mathbf{R} \right)^2 \right]$$
 (10)

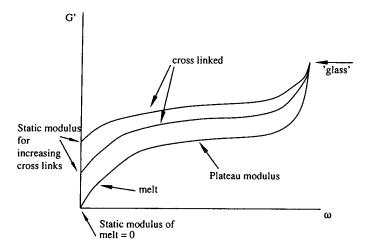


Figure 3:

and the constraint

$$\int_{0}^{L} \frac{\partial n}{\partial s} ds = N \tag{11}$$

where aN is the length of the tube.

The relative velocities are given by:

$$\left(\frac{d\mathbf{r}}{dt} - \frac{d\mathbf{R}}{dt}\right)\Big|_{\mathbf{fixed s}} = \left(\dot{\mathbf{r}} - \frac{\partial \mathbf{R}}{\partial n}\dot{n} - \dot{\mathbf{R}}\right) \tag{12}$$

this velocity $\times \zeta$ gives the friction of a chain segment within its environment.

$$\left. \left(\frac{d\mathbf{R}}{dt} \bigg|_{s} - \frac{\partial \mathbf{R}}{\partial t} \bigg|_{n} \right) \to \frac{\partial \mathbf{R}}{\partial n} \dot{n}$$
 (13)

Equation 13 is the slip motion along the primitive path, and has friction ν .

Therefore, the Rayleighan becomes:

$$\mathcal{R}_{0} = -U - \frac{1}{2} \zeta \int ds \left(\dot{\mathbf{r}} - \mathbf{R}' \dot{\mathbf{n}} - \dot{\mathbf{R}} \right)^{2} - \frac{1}{2} \nu \int ds \left(\mathbf{R}' \dot{\mathbf{r}} \right)^{2}$$
(14)

and from Rayleighs equations, we obtain:



Figure 4:

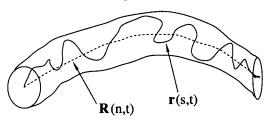


Figure 5:

$$\zeta \left(\dot{\mathbf{r}} - \frac{\partial \mathbf{R}}{\partial n} \dot{n} - \dot{\mathbf{R}} \right) + \frac{3kT}{L} \left(-\frac{\partial^2 \mathbf{r}}{\partial s^2} + q_1^2 (\mathbf{r} - \mathbf{R}) \right) = \mathbf{0}$$

$$\left(\partial \mathbf{R} \right)^2 \dots 3kT \partial \mathbf{R} \left(-\frac{\partial^2 \mathbf{r}}{\partial s^2} \right) = \mathbf{0}$$
(15)

$$\nu \left(\frac{\partial \mathbf{R}}{\partial n}\right)^{2} \dot{n} + \frac{3kT}{L} \frac{\partial \mathbf{R}}{\partial n} \left(-\frac{\partial^{2} \mathbf{r}}{\partial s^{2}}\right) = 0$$
 (16)

Now put $\tilde{\mathbf{r}}(st) = \mathbf{r}(st) - \mathbf{R}(n, t)$, and ignore $\tilde{\mathbf{r}}$, to obtain:

$$\nu \left(\frac{\partial \mathbf{R}}{\partial n}\right)^2 \dot{n} + \frac{3kT}{L} \left(\frac{\partial \mathbf{R}}{\partial n}\right) \cdot \left(-\frac{\partial^2 \mathbf{R}}{\partial s^2}\right) = 0 \tag{17}$$

The static equilibrium solution is:

$$R_0 \sim an(s,t), \quad \frac{\partial^2 n}{\partial s^2} = 0$$
 (18)

and

$$n_0 = \frac{N}{L}s\tag{19}$$

for uniform progression.

Deformation

The deformation is given by a linear theory:

$$\mathbf{R} = \underline{E}(t)\,\mathbf{R}_0 \cong \mathbf{R}_0 + \underline{\varepsilon} \cdot \mathbf{R}_0 \tag{20}$$

$$n\left(st\right) = n_0 + n_1 \tag{21}$$

$$\frac{l\nu}{3kT} \left(\frac{\partial n_1}{\partial t} \right) - \frac{\partial^2 n_1}{\partial s^2} = \left(\frac{N}{aL} \right)^2 \frac{\partial \mathbf{R}_0}{\partial n} \left(\varepsilon + \varepsilon^T \right) \frac{\partial \mathbf{R}_0}{\partial n}$$
 (22)

where the right hand side of the last equation represents the source of n_1 changes.

Stress

We have the usual formula:

$$\sigma_{ij} = c_x \left(\frac{3kT}{l} \right) \int_0^L ds \left\langle \frac{\partial r_i}{\partial s} \frac{\partial r_j}{\partial s} \right\rangle \tag{23}$$

where

$$\mathbf{r}\left(s,t\right) \cong \mathbf{R}_{0}\left(n_{0}\right) + \underline{\underline{\varepsilon}}\mathbf{R}_{0} + \left(\frac{\partial \mathbf{R}_{0}}{\partial n_{0}}\right) n_{1}\left(s,t\right) \tag{24}$$

and

$$\mathbf{r} \cong \mathbf{R}_0 + \underline{\underline{\varepsilon}} \cdot \mathbf{R}_0 + \left(\frac{\partial \mathbf{R}_0}{\partial \mathbf{n}_0}\right) \mathbf{n}_1 \tag{25}$$

where the first term of equation (25) gives zero effect from thermodynamic theory and the second term corresponds to the stress, $G(\omega \to 0)$. For a random walk on a primitive path, we have

$$\left\langle \frac{\partial R_{0i}}{\partial s} \frac{\partial R_{0j}}{\partial s} \right\rangle = \left(\frac{N}{L} \right)^2 \frac{a^2}{3} \delta_{ij} \tag{26}$$

and using the fact that $Na^2 = Ll$, we have

$$\underline{\sigma} = (c_x N) k T \underline{\varepsilon} (t) \tag{27}$$

The third term of equation 25 corresponds to the relaxation.

$$n_1 = \int_a^L G\left(ss'\right) \tag{28}$$

with a source term

$$\left(\frac{N}{aL}\right)^2 \frac{\partial R_0}{\partial n} \left(\varepsilon + \varepsilon^T\right) \frac{\partial R_0}{\partial n} \tag{29}$$

 \mathbf{and}

$$\left(\frac{l\nu}{3kT}i\omega - \frac{\partial^2}{\partial s^2}\right)G = \delta\left(s - s'\right). \tag{30}$$

Final Result

Take the case of $\epsilon_{\alpha\beta}=\epsilon_{\alpha\beta}^{0}Re\left(\exp\left(i\omega t\right)\right)$

$$\sigma = c_x NkT \underline{\underline{\varepsilon}}^0 Re \left[2 - \frac{2}{5} \frac{1}{x} f(x, N) \exp(i\omega t) \right]$$
 (31)

where

$$x = \exp(i\pi/4)\sqrt{\frac{l\nu\omega}{kT}}\left(\frac{L}{N}\right)$$
 (32)

and

$$f\left(x,N\right)=1-\exp\left(-x\right)-\frac{2\exp\left(-nX\right)}{\sinh\left(Nx\right)}\sinh^{2}\left(\frac{x}{2}\right)-\frac{1}{N}\tanh\left(\frac{x}{2}\right) \tag{33}$$

The diffusion of the primitive path is characterised by the time:

$$\tau = \frac{1}{2} \frac{l\nu}{3kT} \left(\frac{L}{N}\right)^2 \tag{34}$$

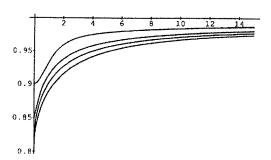


Figure 1: $G'/[2k_BT(c_x+c_e)]$ versus $\tau_{L/N}\omega$. From top to bottom, $N=1+c_e/c_r=1,2,4,8,\infty$.

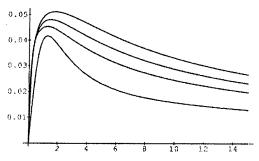


Figure 2: $G''/[2k_BT(c_x+c_c)]$ versus $\tau_{L/N}\omega$. From bottom to top, $N=1+c_c/c_r=1,2,4,3,\infty$.

Figure 6:

Consider the following specific example. Let $\varepsilon_{xx}=\varepsilon_{yy}=0,$ and $\varepsilon_{zz}=\varepsilon^0Re\left(\exp\left(i\omega t\right)\right).$

Also, let $\sigma_{zz}=Re\left(G^{*}\varepsilon^{0}\exp\left(i\omega t\right)\right)$, where

$$G^* = (c_x N) kT \left(2 - \frac{2}{5} \frac{1}{x} f(x, N)\right)$$

$$\tag{35}$$

In equation (35),

 $c_x \equiv \text{number of chains per unit volume}$

 $c_x N \equiv \text{number of steps of primitive path per unit volume}$

(36)

i.e., c_x is the density of cross links, and c_xN is the density of crosslinks plus the density of the entanglements, so $c_xN=c_x+c_e$.

There are a number of limiting cases:

1.
$$\frac{c_x}{c_x} = 0$$
 $G^* = 2c_x kT$ (i.e. $N = 1$) (37)

2.
$$\frac{c_x}{c_x} \to \infty$$
 $G^* = 2 (c_x + c_e) kT \left[1 - \frac{1}{5} \frac{(1 - \exp(-x))}{x} \right]$ (i.e. $N = \infty$) (38)

3.
$$G^*(\omega \to \infty) = 2uT(c_x + c_e)$$
 (plateau) (39)

4.
$$G^*(\omega \to 0) = 2kT\left(c_x + \frac{4}{5}c_e\right)$$
 (for large $Nc_e >> c_x$, therefore $\frac{8}{5}\left(c_xN\right)kT$) (40)

For the general Rayleighan problem, consider the simple case of unentangled chains: $\mathbf{r}(s_b^a) = \mathbf{r}(s_b^b)$

$$\mathcal{R} = -\sum_{a} \frac{3kT}{2l} \int \left(\frac{\partial r_{a}}{\partial s_{a}}\right)^{2} \frac{ds}{dt} + \sum_{a,b} \int \lambda_{ab} \left(t\right) \left(r_{a} \left(s_{a}^{b} t\right) - r_{b} \left(s_{b}^{a} t\right)\right) dt + \sum_{a} \frac{m}{2} \int \dot{r}_{a}^{2} \left(s_{a}\right) ds_{a} dt + \frac{\nu}{2} \int \tilde{v}_{a}^{2} ds_{a} dt + \text{Noise source}$$
(41)

where $\tilde{v} = v - \bar{v}$ is the average velocity.

This gives:

$$\rho \ddot{r}_a + \nu \frac{\partial}{\partial t} (r_a - \bar{r}_a) + \frac{3kT}{l} \frac{\partial^2 r_a}{\partial s_a^2} + \sum_b \lambda_{ab} \delta \left(s_a - s_a^b \right) = f_a$$
 (42)

and we model the sum by $rac{3kT}{l}q_0^2\left(r_i-ar{r}_i
ight)$ to give

$$q_0^2 = \left\langle \sum_b \frac{\delta \left(s_a - s_a^b \right)}{G(0, \omega)} \right\rangle \tag{43}$$

where G is the mean Green function

$$\left[m\omega^2 + i\nu\omega + \frac{3kT}{l}\left(q^2 + q_0^2\right)\right]G = 1 \tag{44}$$

and this yields

$$q_0 = \frac{c_x}{L} \tag{45}$$

The equations above extend the locus of chains into ω variation due to the fluctuation of cross link positions.

One can now generalise the earlier model, but the algebra is difficult.